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Abstract. Detailed theoretical studies of the temperature dependence of EPRg-factor for the
MgO:Cr3+ crystal have been made by considering both the static contribution due to the thermal
expansion of crystal and the vibrational contributions due to the electron–phonon (including
the acoustic and optical phonons) interaction. The static contribution is calculated from the
macroscopic thermodynamic method and the microscopic crystal-field method. The results from
both methods are close to each other, suggesting that the two methods are applicable to studies
of temperature dependence of theg-factor. The vibrational contribution due to acoustic phonons
is obtained by using a Debye model for the lattice vibrations, and that due to optical phonons is
calculated by use of a single-frequency model. The calculated results show that, for theg(T )-
factors at various temperatures, the static contribution is dominant; however, for the temperature
dependence of theg-factor, i.e. dg/dT , the vibrational contributions are large and should be
taken into account.

1. Introduction

The EPRg-factors of paramagnetic ions bound in cubic crystals change with temperature.
The change results from both the implicit or static contribution related to the lattice
thermal expansion and the explicit or vibrational contribution due to the electron–phonon
(including the acoustic and optical phonons) interaction [1–3]. Thus, according to the
general thermodynamic relation, the change ing produced by a change in temperature may
be written as [1]

(dg/dT )P = [∂g/∂(ln R)]T [∂(ln R)/∂T ]P + (∂g/∂T )R. (1)

The first and second terms on the right of equation (1) are the implicit and explicit
contributions, respectively.R is the metal–ligand distance and [∂(ln R)/∂T ]P = αloc is
the local thermal expansion coefficient in the vicinity of paramagnetic ion. If the isothermal
pressure dependence ofg and the local linear compressibilityβloc and the coefficientαloc

are known, the static contribution can be evaluated as

(dg/dT )stat ≈ (∂g/∂P )T [∂P/∂(ln R)]T [∂(ln R)/∂T ]P
≈ (−αloc/βloc)(∂g/∂P )T . (2)

For MgO:Cr3+, Walsh et al [1] evaluated the static contribution to theg-factor from the
experimental pressure dependence of theg-factor [4] and from the compressibilityβh and
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thermal expansion coefficientαh of the host MgO crystal. They found that the static
contributions are different from the observed values in the high-temperature zone and so
the vibrational contributions should be considered. However, no further detailed theoretical
studies were made; in particular, quantitative calculations of various contributions based on
the theoretical models were not carried out. In this paper, we shall make a detailed theoretical
study of theg(T )-factors at various temperatures and the temperature dependence of the
g-factor, i.e. dg/dT , of a MgO:Cr3+ crystal by taking all the contributions into account.

2. Vibrational contributions

The vibrational contributions tog(T ) and dg/dT consist of two parts: the contribution
of acoustic phonons and that of optical phonons. As is known, both the vibrational
contributions to theg-factor (or other spin-Hamiltonian parameters) are proportional to
the mean value〈Q2〉 of the square of the amplitudes of vibrations (an average over the
different normal modes) [2, 3, 5–8]. For vibrations related to the acoustic phonons, by using
a Debye model for the lattice vibrations, we have [3, 8]

〈Q2〉 ∝ T 4
∫ TD/T

x3[ 1
2 + (expx − 1)−1] dx

≈ 1
8T 4

D + T 4
∫ TD/T

x3(expx − 1)−1 dx. (3)

Thus, the vibrational contribution from acoustic phonons to theg-factor can be written as

gac ≈ 1
8KgT

4
D + KgT

4
∫ TD/T

x3(expx − 1)−1 dx (4)

where the first term is the zero-point vibrational contribution andTD is the Debye
temperature.Kg depends on the strength of electron–phonon interaction and also on the
vibrational properties of crystal. Usually,Kg is treated as an adjustable parameter.

The vibrational contribution of optical phonons is due to all the optical modes. However,
since the spectrum of optical phonons is confined to a very narrow frequency region, the
single-frequency model may be taken as a good approximation. Thus, similar to the Einstein
model in the study of specific heat, only one mode of vibration with frequencyωeff is
considered here. So, we have [5, 6]

〈Q2〉 ∝ { 1
2 + [exp(h̄ωeff /kT ) − 1]−1} = 1

2 coth(h̄ωeff /2kT ). (5)

Thus, the vibrational contribution to theg-factor from optical phonons is

gop(T ) = gτ coth(h̄ωeff /2kT ) (6)

wheregτ is also an adjustable parameter that depends on the strength of the electron–phonon
interaction and also on the vibrational properties of the crystal. AtT = 0 K, gop(0) = gτ .
So, the zero-point vibrational contribution is included in equation (6).

3. Static contributions

The static contributions tog(T ) and dg/dT can be calculated from the macroscopic
thermodynamic method and microscopic crystal-field method. The former is related to
equation (2). So, if the local thermal expansion coefficientsαloc(T ) and compressibilities
βloc(T ) at various temperatures are known, the temperature dependence(dg/dT )stat at these
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temperatures can be calculated from the pressure dependence of theg-factor. From this,
g(T ) at various temperatures can be calculated.

The microscopic method is based on the perturbation formula for theg-factor. For
the MgO:Cr3+ crystal, because the spin–orbit coupling coefficientζ 0

p (≈ 150 cm−1) of the
free O2− ion is smaller than that of the Cr3+ ion (ζ 0

p ≈ 240 cm−1), the contributions of
the spin–orbit coupling of the ligand (i.e. O2−) to theg-factor (and other spin-Hamiltonian
parameters) can be neglected [9] and so the classical crystal-field theory can be used here.
According to the theory, the high-order perturbation formulae forg‖ andg⊥ for d3 ions in
trigonal symmetry based on the strong-field coupling scheme were established by Macfarlane
[10]. By letting the trigonal field parametersV = V ′ = 0 and correcting a few misprints in
these formulae, we obtain for d3 ions in cubic symmetry

g = gs − 8kζ/3D1 − 2ζ 2(k + 2gs)/9D2
1 + 4ζ 2(k − 2gs)/9D2

3

−2ζ 2(k + gs)/3D2
2 + 4kζ 2[ 1

9D1D3 − 1
3D1D2 + 1

3D2D3] (7)

wheregs(= 2.0023) is the spin-only value,ζ is the spin–orbit coupling coefficient of central
metal ion in crystal andk is the orbital reduction factor. The zero-order energy separations
are [10]

D1 = 1 = 10Dq D2 = 15B + 5C + 2α′ D3 = 1 + 9B + 3C + 6α′ (8)

whereB andC are the Racah parameters,α′ is the Trees correct,1 (or Dq) is the cubic
field parameter which is related to the metal–ligand distanceR. So, when the distanceR
is changed by temperature variations, the change in the parameter1 and then in the static
contribution to theg-factor due to thermal expansion can be calculated.

Obviously, the total values ofg(T ) and the temperature dependence dg/dT can be
written as

gtot (T ) = gstat (T ) + gac(T ) + gop(T ) (9)

(dg/dT )tot = (dg/dT )stat + (dg/dT )ac + (dg/dT )op. (10)

4. Calculations and results

Now let us calculate numericallyg(T ) and dg/dT for the MgO:Cr3+ crystal by considering
all the above contributions. From the peak of the acoustic phonon branches, the strong
optical branch peak in the phonon density of states for MgO and the vibrational side band
of the optical spectrum of the2E → 4A2 transition of MgO:Cr3+ [11, 12], we obtain
TD ≈ 390 K andh̄ωeff ≈ 422.5 cm−1. These values are very close to those used in the
theoretical explanation of the thermal shift of the R line of the MgO:Cr3+ crystal [13] and
can be regarded as reasonable. In the calculation ofgstat (T ) by the macroscopic method
(i.e. from equation (2)), the pressure dependence of theg-factor is taken as the observed
value [4]

dg/dP ≈ (0.26± 0.01) × 10−4 kbar−1. (11)

The local thermal expansion coefficientsαloc(T ) and compressibilitiesβloc(T ) for MgO:Cr3+

are difficult to determine; however, some workers [14, 15] suggested that the relative change
in coefficientα (i.e. αloc/αh) is the same as that in compressibilityβ and thus the ratio of
α/β would be unchanged for the doped crystals. This point can be understood in physics
from the Gr̈uneisen law [16]α ≈ γCvβ/V and the fact that both the thermal expansion
coefficient and the compressibility depend upon the bonding strength [17]. So, we can use
the coefficientsαh(T ) and compressibilitiesβh(T ) of the host MgO crystal here. These
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coefficients and compressibilities at various temperatures were calculated in [18] using the
thermodynamic formulae. The calculated results are in good agreement with the observed
values [19–21]. The values ofαh(T ) andβh(T ) are shown in table 1. Thegstat (0)-value
at 0 K is treated as an adjustable parameter. Thus, by fitting the total calculated values of
g(T ) to the observed values at all temperatures, we obtain

gstat (0) ≈ 1.9801 or1gstat (0) ≈ gstat (0) − gs ≈ −222× 10−4

Kg ≈ 4.38× 10−14 K−4 gτ ≈ −1.1 × 10−4.
(12)

The various contributions to theg-factor and the comparison between the calculated and
observed1gtot (T ) are shown in table 2.

Table 1. Thermal expansion coefficientα and compressibilityβ of MgO [18].

Temperature α β

(K) (10−6 K−1) (10−4 kbar−1)

10 0.0013 1.955
50 0.231 1.955
75 0.965 1.955

100 2.198 1.955
150 5.097 1.961
200 7.517 1.961
250 9.23 1.972
300 10.6 2.008
400 12.15 2.026
500 13.0 2.051
600 13.6 2.083
700 14.0 2.110
800 14.44 2.134
900 14.75 2.189

The temperature dependence dg/dT changes with temperature in the low-temperature
zone but is close to constant in the high-temperature (T > 500 K) zone. From the above
calculations, we find for MgO:Cr3+ in the high-temperature zone

(dg/dT )tot = (dg/dT )stat + (dg/dT )ac + (dg/dT )op

≈ (−1.87+ 0.86− 0.33) × 10−6 K−1 ≈ −1.34× 10−6 K−1. (13)

The result shows good agreement with the observed value (about(−1.40±0.20)×10−6 K−1

[1]).
For the calculations ofgstat (T ) and (dg/dT )stat by the microscopic method, the

perturbation formulae (i.e. equation (7)) should be used. In the formula, the parameters
B, C, α′ and 1 can be obtained from optical spectra of the studied crystal. From the
optical spectra of MgO:Cr3+ [22, 23], we have

B ≈ 665 cm−1 C ≈ 3084 cm−1 α′ ≈ 25 cm−1 1 ≈ 16 200 cm−1. (14)

The orbital reduction factorK ≈ 0.7, as shown in [10] for Cr3+ in many oxides. The spin–
orbit coupling coefficient is treated as an adjustable parameter. By fitting the observed value
of g (≈ 1.9798±0.0001 [1]) of MgO:Cr3+ at room temperature and by considering the above
vibrational contributions to theg-factor, we obtainζ ≈ 193.6 cm−1. The value for Cr3+

in MgO is smaller than that (about 240 cm−1 [9]) for a free Cr3+ ion and can be regarded
as reasonable. The parameter1 changes with the distanceR. The dependence1 ∝ R−5
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Table 2. Various contributions to theg-factor (in 10−4) of the MgO:Cr3+ crystal (note that
1g = g − gs here).

Temperature
(K) 1ga

stat 1gb
stat gac gop 1ga

tot 1gb
tot 1gExpt [1]c

0 −222.0 −222.4 1.3 −1.1 −221.8 −224.2 −222.7
50 −222.0 −224.4 1.3 −1.1 −221.8 −224.2 −222.7

100 −222.3 −224.6 1.4 −1.1 −222.0 −224.3 −222.8
150 −223.0 −224.9 1.7 −1.1 −222.4 −224.3 −223.2
200 −224.0 −225.3 2.0 −1.2 −223.2 −224.5 −223.5
250 −225.0 −225.8 2.4 −1.3 −223.9 −224.7 −223.9
300 −226.1 −226.4 2.8 −1.4 −224.7 −225.0 −224.9
400 −228.2 −227.8 3.6 −1.7 −226.3 −225.9 −225.8
500 −230.2 −229.4 4.5 −2.0 −227.8 −226.9 −226.9
600 −232.2 −231.0 5.3 −2.4 −229.2 −228.1 −228.4
700 −234.1 −232.8 6.2 −2.7 −230.6 −229.3 −230.1
800 −236.0 −234.6 7.0 −3.0 −232.0 −230.6 −231.0
900 −237.8 −236.6 7.9 −3.4 −233.3 −232.1 −232.6

a 1gstat is calculated by the macroscopic thermodynamic method.
b 1gstat is calculated by the microscopic crystal-field method.
c The experimental data are taken from figure 2 of [1]. The experimental errors of1g(T ) are
estimated to be about±1.0 × 10−4.

based on the effective point-charge model is often used in many studies; however, theR−5

dependence for MgO:Cr3+ will cause the local compressibility in the vicinity of the Cr3+ ion
to be larger than that of the host MgO crystal from high-pressure spectroscopy, as pointed
out in [22]. Considering that, when an impurity ion carries extra charge, the interionic force
between the impurity ion and ligands will be larger than that in the pure lattice and hence
the local compressibility decreases [24, 25], the larger local compressibility in MgO:Cr3+ is
not reasonable from a physics viewpoint. So, as shown in [1], for MgO:Cr3+, the relation
1 ∝ R−6 based on the effective dipole model should be used. From the relation, we obtain
at room temperature the local compressibility

βloc ≈ 1.9 × 10−4 kbar−1 (15)

by fitting the observed pressure dependences of the optical spectrum and theg-factor. The
comparison between calculation and experiment is shown in table 3. Obviously, the local
compressibility is smaller than the host compressibility (about 2.008× 10−4 kbar−1; see
table 1) and can be regarded as reasonable.

Table 3. Pressure dependences of the optical spectrum andg-factor of the MgO:Cr3+ crystal.

Calculation Experiment

d1/dP (cm−1 kbar−1) 18.5 19± 1 [22]
dg/dP (10−4 kbar−1) 0.26 0.26± 0.01 [4]

As has been said before,

βloc/βh ≈ αloc/αh. (16)

So, we haveαloc(T ) ≈ 0.946αh(T ); thus, according to equation (7), we can calculate the
values ofgstat (T ) and then ofgtot (T ) (both are characterized by1g = g − gs) from the
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coefficientsαh(T ) of MgO at various temperatures (see table 1). The calculated results are
also compared with the observed values in table 2.

In the high-temperature zone, we find that

(dg/dT )tot ≈ (−1.87+ 0.86− 0.33) × 10−6 K−1 ≈ −1.34× 10−6 K−1. (17)

The result is also in good agreement with the observed value (about(−1.40 ± 0.20) ×
10−6 K−1).

5. Discussion

From the above studies, several points should be stressed here.

(i) The static contributions tog(T ) (or dg/dT ) obtained from the macroscopic
thermodynamic method and the microscopic crystal-field method are close to each other
(see table 2), suggesting that both methods are applicable to the study of the temperature
dependence of theg-factor.

(ii) The vibrational contributions tog(T ) (or dg/dT ) from the acoustic and optical
phonons cancel partly. The magnitude of the acoustic phonon contribution is larger than
that of the optical phonon contribution.

(iii) For the g(T )-factors at various temperatures, the static contribution is dominant;
however, for the temperature dependence of theg-factor, i.e. dg/dT , the vibrational
contributions are large, in particular, in the high-temperature zone, and cannot be neglected.
So, to explain satisfactorily the temperature dependence of theg-factor for the MgO:Cr3+

crystal, all the contributions due to the thermal expansion and the electron–phonon (including
the acoustic and optical phonons) interaction should be taken into account.
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